선형회귀 2

[5장-3] 릿지 회귀, 라소 회귀, 엘라스틱넷 회귀, 선형 회귀모델, 로지스틱 회귀의 이해

릿지(Ridge) 회귀 alpha 값을 이용하여 회귀 계수의 크기를 조절(alpha 값이 크면 회귀 계수 값이 작아지고, alpha 값이 작으면 회귀 계수 값이 커집니다) 사이킷런은 릿지 회귀를 위해 Ridge 클래스를 제공합니다. Regularized Linear Models – Ridge, Lasso # 앞의 LinearRegression예제에서 분할한 feature 데이터 셋인 X_data과 Target 데이터 셋인 Y_target 데이터셋을 그대로 이용 from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score # boston 데이타셋 로드 boston = load_boston() # bosto..

[5장-1] 회귀, 선형회귀

회귀 * 데이터 값이 평균과 같은 일정한 값으로 돌아가려는 경향을 이용한 통계기법 * 여러 개의 독립변수와 한 개의 종속변수 간의 상관관계를 모델링하는 기법 머신러닝 회귀 예측의 핵심: 주어진 피처와 결정 값 데이터 기반에서 학습을 통해 최적의 회귀계수를 찾아내는 것. 회귀: 선형회귀/ 비선형 회귀 RSS(비용함수) 기반의 회귀 오류 측정 → 오류 값의 제곱을 구해서 더하는 방식 경사하강법(Gradient Descent) : 비용최소화 하기 반복적으로 비용 함수의 반환 값, 즉 예측값과 실제 값의 차이가 작아지는 방향성을 가지고 W파라미터를 지속해서 보정해 나감. 오류값이 더 이상 작아지지 않으면 그 오류 값을 최소 비용으로 판단하고 그때의 W값을 최적 파라미터로 반환 파이썬 코드로 경사하강법 작성 실제..

728x90