1.머신러닝이란? - 데이터를 기반으로 패턴을 학습하고 결과를 추론하는 알고리즘 기법 - 특징: 데이터 마이닝, 영상 인식, 음성 인식, 자연어 처리에 적용 2. 머신러닝의 필요성 - 복잡한 문제를 데이터를 기반으로 숨겨진 패턴을 인지하여 해결함 - 데이터를 기반으로 통계적 신뢰도를 강화하고 예측 오류를 최소화하기 위한 다양한 수학적 기법을 적용해 데이터 내의 패턴을 스스로 인지하고 신뢰도 있는 예측 결과를 도출함 3. 머신러닝의 분류 - 지도학습: 명확한 결정값이 주어진 데이터를 학습 ex. 분류, 회귀, 추천시스템, 시각/음성 인지, 텍스트 분석, NLP - 비지도학습: 결정값이 주어지지 않는 데이터를 학습 ex. 군집화(클러스터링), 차원 축소, 강화학습 4. 머신러닝의 단점 - 데이터에 너무 의존..